Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.159
Filtrar
1.
Biochem Soc Trans ; 52(2): 567-580, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629621

RESUMO

The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.


Assuntos
Homeostase , Fosfatos de Inositol , Polifosfatos , Polifosfatos/metabolismo , Animais , Fosfatos de Inositol/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Dictyostelium/metabolismo , Transdução de Sinais
2.
Biochem Soc Trans ; 52(2): 671-679, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38630434

RESUMO

Inorganic polyphosphate (polyP) is widely recognized for playing important roles and processes involved in energy and phosphate storage, regulation of gene expression, and calcium signaling. The less well-known role of polyP is as a direct mediator of ion transport across biological membranes. Here, we will briefly summarize current knowledge of the molecular mechanisms of how polyP can be involved in membrane ion transport. We discuss three types of mechanisms that might involve polyP: (1) formation of non-protein channel complex that includes calcium, polyP, and polyhydroxybutyrate (PHB); (2) modulation of the channel activity of PHBlated protein channels; and (3) direct effects of polyP on the function of the voltage-gated ion channels in the process that do not involve PHB.


Assuntos
Transporte de Íons , Polifosfatos , Polifosfatos/metabolismo , Humanos , Membrana Celular/metabolismo , Proibitinas , Animais , Cálcio/metabolismo , Hidroxibutiratos/metabolismo , Canais Iônicos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(15): e2313004121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564631

RESUMO

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.


Assuntos
Polifosfatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Polifosfatos/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo
4.
PLoS Biol ; 22(3): e3002558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478588

RESUMO

Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1,000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work, we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (Δppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and Δppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of the required building blocks. From our data set, we were particularly interested in Arn and EptA proteins, which were down-regulated in Δppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins in K-12 strains and a uropathogenic isolate, and provide evidence that this mis-regulation in Δppk cells stems from a failure to induce the BasRS two-component system during starvation. We also show that Δppk mutants unable to up-regulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.


Assuntos
Escherichia coli , Lipopolissacarídeos , Fosfotransferases (Aceptor do Grupo Fosfato) , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Lipídeo A/metabolismo , Polifosfatos/metabolismo
5.
J Microbiol Biotechnol ; 34(2): 407-414, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247220

RESUMO

Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (ΔphoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.


Assuntos
Synechocystis , Águas Residuárias , Synechocystis/genética , Synechocystis/metabolismo , Polifosfatos/metabolismo , Fósforo/metabolismo , Reatores Biológicos , Meios de Cultura/metabolismo
6.
Water Res ; 251: 121089, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277823

RESUMO

We piloted the incorporation of side-stream enhanced biological phosphorus removal (S2EBPR) with A/B stage short-cut nitrogen removal processes to enable simultaneous carbon-energy-efficient nutrients removal. This unique configuration and system conditions exerted selective force on microbial populations distinct from those in conventional EBPR. Interestingly, effective P removal was achieved with the predominance of Acinetobacter (21.5 ± 0.1 %) with nearly negligible level of known conical PAOs (Ca. Accumulibacter and Tetrasphaera were 0.04 ± 0.10 % and 0.47 ± 0.32 %, respectively). Using a combination of techniques, such as fluorescence in situ hybridization (FISH) coupled with single cell Raman spectroscopy (SCRS), the metabolic tracing of Acinetobacter-like cells exerted PAO-like phenotypic profiling. In addition, comparative metagenomics analysis of the closely related Acinetobacter spp. revealed the EBPR relevant metabolic pathways. Further oligotyping analysis of 16s rRNA V4 region revealed sub-clusters (microdiversity) of the Acinetobacter and revealed that the sub-group (oligo type 1, identical (100 % alignment identity) hits from Acinetobacter_midas_s_49494, and Acinetobacter_midas_s_55652) correlated with EBPR activities parameters, provided strong evidence that the identified Acinetobacter most likely contributed to the overall P removal in our A/B-shortcut N-S2EBPR system. To the best of our knowledge, this is the first study to confirm the in situ EBPR activity of Acinetobacter using combined genomics and SCRS Raman techniques. Further research is needed to identify the specific taxon, and phenotype of the Acinetobacter that are responsible for the P-removal.


Assuntos
Fósforo , Rios , Fósforo/metabolismo , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Reatores Biológicos , Polifosfatos/metabolismo , Esgotos
7.
Water Res ; 251: 121050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241807

RESUMO

While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR. The novel process configuration design enabled a system shift in carbon flux and distribution for efficient EBPR, and provided unique selective factors for ecological niche partitioning among different key functionally relevant microorganisms including polyphosphate accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). The combined nitrite from B-stage to S2EBPR and aerobic-anoxic conditions in our HRAS-P(D)N/A-S2EBPR system promoted DPAOs for simultaneous internal carbon-driven denitrification via nitrite and P removal. 16S rRNA gene-based oligotyping analysis revealed high phylogenetic microdiversity within the Accumulibacter population and discovered coexistence of certain oligotypes of Accumulibacter and Competibacter correlated with efficient P removal. Single-cell Raman micro-spectroscopy-based phenotypic profiling showed high phenotypic microdiversity in the active PAO community and the involvement of unidentified PAOs and internal carbon-accumulating organisms that potentially played an important role in system performance. This is the first pilot study to demonstrate that the P(D)N-S2EBPR system could achieve shortcut N removal and influent carbon-independent EBPR simultaneously, and the results provided insights into the effects of incorporating S2EBPR into A/B process on metabolic activities, microbial ecology, and resulted system performance.


Assuntos
Esgotos , Purificação da Água , Desnitrificação , Fósforo/metabolismo , Rios , Nitrogênio , RNA Ribossômico 16S , Filogenia , Nitritos , Projetos Piloto , Reatores Biológicos , Purificação da Água/métodos , Polifosfatos/metabolismo , Carbono
8.
Proc Natl Acad Sci U S A ; 121(2): e2309664121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170746

RESUMO

Inorganic polyphosphate (polyP) is primarily synthesized by Polyphosphate Kinase-1 (PPK-1) and regulates numerous cellular processes, including energy metabolism, stress adaptation, drug tolerance, and microbial pathogenesis. Here, we report that polyP interacts with acyl CoA carboxylases, enzymes involved in lipid biosynthesis in Mycobacterium tuberculosis. We show that deletion of ppk-1 in M. tuberculosis results in transcriptional and metabolic reprogramming. In comparison to the parental strain, the Δppk-1 mutant strain had reduced levels of virulence-associated lipids such as PDIMs and TDM. We also observed that polyP deficiency in M. tuberculosis is associated with enhanced phagosome-lysosome fusion in infected macrophages and attenuated growth in mice. Host RNA-seq analysis revealed decreased levels of transcripts encoding for proteins involved in either type I interferon signaling or formation of foamy macrophages in the lungs of Δppk-1 mutant-infected mice relative to parental strain-infected animals. Using target-based screening and molecular docking, we have identified raloxifene hydrochloride as a broad-spectrum PPK-1 inhibitor. We show that raloxifene hydrochloride significantly enhanced the activity of isoniazid, bedaquiline, and pretomanid against M. tuberculosis in macrophages. Additionally, raloxifene inhibited the growth of M. tuberculosis in mice. This is an in-depth study that provides mechanistic insights into the regulation of mycobacterial pathogenesis by polyP deficiency.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Simulação de Acoplamento Molecular , Cloridrato de Raloxifeno/metabolismo , Polifosfatos/metabolismo , Tuberculose/microbiologia , Redes e Vias Metabólicas , Proteínas de Bactérias/metabolismo
9.
J Biol Chem ; 300(2): 105657, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224949

RESUMO

The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.


Assuntos
Fosfotransferases (Aceptor do Grupo Fosfato) , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Inositol/metabolismo , Fosforilação , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Sci Total Environ ; 912: 168952, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043807

RESUMO

Enhanced biological phosphorus removal (EBPR) is an effective process for phosphorus removal from wastewater. In this study, two lab-scale sequencing batch reactors (SBR) were used to perform EBPR process, in which genus Propioniciclava was unexpectedly accumulated and its relative abundance was over 70 %. A series of tests were conducted to explore the role of Propioniciclava in the two EBPR systems. The two systems performed steadily throughout the study, and the phosphorus removal efficiencies were 96.6 % and 93.5 % for SBR1 and SBR2, respectively. The stoichiometric analysis related to polyphosphate accumulating organisms (PAOs) indicated that polyphosphate accumulating metabolism (PAM) was achieved in the anaerobic phase. It appeared that the Propioniciclava-dominated systems could not perform denitrifying phosphorus removal. Instead, phosphorus was released under anoxic conditions without carbon sources. According to the genomic information from Integrated Microbial Genomes (IMG) database, Propioniciclava owns ppk1, ppk2 and ppx genes that are associated with phosphorus release and uptake functions. By phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) analysis, the abundance of genes related to phosphorus metabolism was much higher than that of genes related to denitrification. Therefore, Propioniciclava was presumed to be a potential PAO without denitrifying phosphorus uptake function. In addition to Propioniciclava, Tessaracoccus and Thiothrix were also enriched in both systems. Overall, this study proposes a novel potential PAO and broadens the understanding of EBPR microbial communities.


Assuntos
Fósforo , Polifosfatos , Polifosfatos/metabolismo , Fósforo/metabolismo , Filogenia , Águas Residuárias , Transporte Biológico , Reatores Biológicos , Esgotos
11.
Bioresour Technol ; 393: 130048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37980947

RESUMO

Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.


Assuntos
Actinobacteria , Actinomycetales , Glucose , Glucose/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Polifosfatos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Reatores Biológicos , Esgotos
12.
FEBS Open Bio ; 14(2): 344-354, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38105501

RESUMO

Inorganic polyphosphate (polyP) plays a vital role in cellular energy metabolism and signaling, owing to its structure and high-energy phosphate bonds. Intracellular ATP functions both as a cellular energy source and a key factor in cell death, and ATP dynamics in tumor cells are crucial for advancing cancer therapy. In this study, we explored the interplay between polyP and ATP in cellular energy metabolism. Treatment with polyP did not affect cell proliferation of human non-small cell lung cancer H1299 and human glioblastoma T98G cell lines as compared to their respective control cells until 72 h post-treatment. The mitochondrial membrane potential (MMP) in polyP-treated cells was low, contrasting with the time-dependent increase observed in control cells. While the ATP content increased over time in untreated and Na-phosphate-treated control cells, it remained unchanged in polyP-treated cells. Furthermore, the addition of cyclosporine A, a mitochondrial permeability transition pore (mPTP) inhibitor, failed to restore ATP levels in polyP-treated cells. We performed lactate assays and western blot analysis to evaluate the effect of polyP on glucose metabolism and found no significant differences in lactate secretion or glucose-6-phosphate dehydrogenase (G6PD) activity between polyP-treated and control cells. Additional pyruvate restored MMP but had no effect on the cellular ATP content in polyP-treated cells. We observed no correlation between the Warburg effect and glucose metabolism during ATP depletion in polyP-treated cells. Further investigation is warranted to explore the roles of polyP and ATP in cancer cell energy metabolism, which might offer potential avenues for therapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Polifosfatos/farmacologia , Polifosfatos/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Lactatos , Glucose
13.
Biochem Soc Trans ; 51(6): 2153-2161, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37955101

RESUMO

Inorganic polyphosphate (polyP) is an ancient polymer that is well-conserved throughout evolution. It is formed by multiple subunits of orthophosphates linked together by phosphoanhydride bonds. The presence of these bonds, which are structurally similar to those found in ATP, and the high abundance of polyP in mammalian mitochondria, suggest that polyP could be involved in the regulation of the physiology of the organelle, especially in the energy metabolism. In fact, the scientific literature shows an unequivocal role for polyP not only in directly regulating oxidative a phosphorylation; but also in the regulation of reactive oxygen species metabolism, mitochondrial free calcium homeostasis, and the formation and opening of mitochondrial permeability transitions pore. All these processes are closely interconnected with the status of mitochondrial bioenergetics and therefore play a crucial role in maintaining mitochondrial and cell physiology. In this invited review, we discuss the main scientific literature regarding the regulatory role of polyP in mammalian mitochondrial physiology, placing a particular emphasis on its impact on energy metabolism. Although the effects of polyP on the physiology of the organelle are evident; numerous aspects, particularly within mammalian cells, remain unclear and require further investigation. These aspects encompass, for example, advancing the development of more precise analytical methods, unraveling the mechanism responsible for sensing polyP levels, and understanding the exact molecular mechanism that underlies the effects of polyP on mitochondrial physiology. By increasing our understanding of the biology of this ancient and understudied polymer, we could unravel new pharmacological targets in diseases where mitochondrial dysfunction, including energy metabolism dysregulation, has been broadly described.


Assuntos
Mitocôndrias , Polifosfatos , Animais , Metabolismo Energético , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Polímeros , Polifosfatos/metabolismo
14.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4413-4427, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38013175

RESUMO

Adenosine triphosphate (ATP) regeneration systems are essential for efficient biocatalytic phosphoryl transfer reactions. Polyphosphate kinase (PPK) is a versatile enzyme that can transfer phosphate groups among adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, and polyphosphate (Poly P). Utilization of PPK is an attractive solution to address the problem of ATP regeneration due to its ability to use a variety of inexpensive and stable Poly P salts as phosphate group donors. This review comprehensively summarizes the structural characteristics and catalytic mechanisms of different types of PPKs, as well as the variations in enzyme activity, catalytic efficiency, stability, and coenzyme preference observed in PPKs from different sources. Moreover, recent advances in PPK-mediated ATP regeneration systems and protein engineering of wild-type PPK are summarized.


Assuntos
Trifosfato de Adenosina , Polifosfatos , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina , Polifosfatos/química , Polifosfatos/metabolismo , Catálise , Regeneração
15.
J Biol Chem ; 299(12): 105454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949217

RESUMO

Phosphate (Pi) is a macronutrient, and Pi homeostasis is essential for life. Pi homeostasis has been intensively studied; however, many questions remain, even at the cellular level. Using Schizosaccharomyces pombe, we sought to better understand cellular Pi homeostasis and showed that three Pi regulators with SPX domains, Xpr1/Spx2, Pqr1, and the VTC complex synergistically contribute to Pi homeostasis to support cell proliferation and survival. SPX domains bind to inositol pyrophosphate and modulate activities of Pi-related proteins. Xpr1 is a plasma membrane protein and its Pi-exporting activity has been demonstrated in metazoan orthologs, but not in fungi. We first found that S. pombe Xpr1 is a Pi exporter, activity of which is regulated and accelerated in the mutants of Pqr1 and the VTC complex. Pqr1 is the ubiquitin ligase downregulating the Pi importers, Pho84 and Pho842. The VTC complex synthesizes polyphosphate in vacuoles. Triple deletion of Xpr1, Pqr1, and Vtc4, the catalytic core of the VTC complex, was nearly lethal in normal medium but survivable at lower [Pi]. All double-deletion mutants of the three genes were viable at normal Pi, but Δpqr1Δxpr1 showed severe viability loss at high [Pi], accompanied by hyper-elevation of cellular total Pi and free Pi. This study suggests that the three cellular processes, restriction of Pi uptake, Pi export, and polyP synthesis, contribute synergistically to cell proliferation through maintenance of Pi homeostasis, leading to the hypothesis that cooperation between Pqr1, Xpr1, and the VTC complex protects the cytoplasm and/or the nucleus from lethal elevation of free Pi.


Assuntos
Fosfatos , Polifosfatos , Animais , Transporte Biológico , Homeostase , Fosfatos/metabolismo , Polifosfatos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
16.
Water Res ; 247: 120776, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898002

RESUMO

Enhanced biological phosphate removal and aerobic sludge granulation are commonly studied with fatty acids as substrate. Fermentative substrates such as glucose have received limited attention. In this work, glucose conversion by aerobic granular sludge and its impact on phosphate removal was studied. Long-term stable phosphate removal and successful granulation were achieved. Glucose was rapidly taken up (273 mg/gVSS/h) at the start of the anaerobic phase, while phosphate was released during the full anaerobic phase. Some lactate was produced during glucose consumption, which was anaerobically consumed once glucose was depleted. The phosphate release appeared to be directly proportional to the uptake of lactate. The ratio of phosphorus released to glucose carbon taken up over the full anaerobic phase was 0.25 Pmol/Cmol. Along with glucose and lactate uptake in the anaerobic phase, poly­hydroxy-alkanoates and glycogen storage were observed. There was a linear correlation between glucose consumption and lactate formation. While lactate accounted for approximately 89 % of the observed products in the bulk liquid, minor quantities of formate (5 %), propionate (4 %), and acetate (3 %) were also detected (mass fraction). Formate was not consumed anaerobically. Quantitative fluorescence in-situ hybridization (qFISH) revealed that polyphosphate accumulating organisms (PAO) accounted for 61 ± 15 % of the total biovolume. Metagenome evaluation of the biomass indicated a high abundance of Micropruina and Ca. Accumulibacter in the system, which was in accordance with the microscopic observations and the protein mass fraction from metaproteome analysis. Anaerobic conversions were evaluated based on theoretical ATP balances to provide the substrate distribution amongst the dominant genera. This research shows that aerobic granular sludge technology can be applied to glucose-containing effluents and that glucose is a suitable substrate for achieving phosphate removal. The results also show that for fermentable substrates a microbial community consisting of fermentative organisms and PAO develop.


Assuntos
Glucose , Esgotos , Reatores Biológicos , Polifosfatos/metabolismo , Fósforo/metabolismo , Lactatos
17.
Water Res ; 246: 120742, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857010

RESUMO

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Bactérias/metabolismo , Glicogênio/metabolismo , Nitritos/metabolismo , Polifosfatos/metabolismo , Esgotos
18.
Water Res ; 246: 120713, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839225

RESUMO

Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.


Assuntos
Betaproteobacteria , Fósforo , Fósforo/metabolismo , Fermentação , Prótons , Reatores Biológicos , Betaproteobacteria/metabolismo , Polifosfatos/metabolismo , Lactatos/metabolismo , Alanina , Succinatos/metabolismo , Carbono/metabolismo , Acetatos/metabolismo
19.
mBio ; 14(5): e0193923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754562

RESUMO

IMPORTANCE: Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.


Assuntos
Dictyostelium , Polifosfatos , Humanos , Polifosfatos/metabolismo , Difosfatos/metabolismo , Dictyostelium/microbiologia , Bactérias/metabolismo , Fagocitose , Serina-Treonina Quinases TOR
20.
FEBS Lett ; 597(18): 2316-2333, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37574219

RESUMO

We previously found that overexpression of phosphate starvation-responsive genes by disrupting PHO80 led to a shortened replicative lifespan in yeast. To identify lifespan-related genes, we screened upregulated genes in the pho80Δ mutant and focused on the VTC genes, which encode the vacuolar polyphosphate (polyP) polymerase complex. VTC1/VTC2/VTC4 deletion restored the lifespan and intracellular polyP levels in pho80Δ. In the wild type, overexpression of VTC5 or a combination of the other VTCs caused high polyP accumulation and shortened lifespan. Similar phenotypes were caused by the deletion of polyP phosphatase genes-vacuolar PPN1 and cytosolic PPX1. The polyP-accumulating strains exhibited stress sensitivities. Thus, we demonstrated that polyP metabolic enzymes participate in replicative lifespan, and extreme polyP accumulation shortens the lifespan.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Polifosfatos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Longevidade/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...